skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khamis, Mahmoud Abo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, several information-theoretic upper bounds have been introduced on the output size and evaluation cost of database join queries. These bounds vary in their power depending on both the type of statistics on input relations and the query plans that they support. This motivated the search for algorithms that can compute the output of a join query in times that are bounded by the corresponding information-theoretic bounds. In this paper, we describe PANDA, an algorithm that takes a Shannon-inequality that underlies the bound, and translates each proof step into an algorithmic step corresponding to some database operation. PANDA computes answers to a conjunctive query in time given by the the submodular width plus the output size of the query. The version in this paper represents a significant simplification of the original version [ANS, PODS'17]. Comment: 42 pages. This is the TheoretiCS journal version 
    more » « less
    Free, publicly-accessible full text available April 30, 2026
  2. Modern data analytics applications, such as knowledge graph reasoning and machine learning, typically involve recursion through aggregation. Such computations pose great challenges to both system builders and theoreticians: first, to derive simple yet powerful abstractions for these computations; second, to define and study the semantics for the abstractions; third, to devise optimization techniques for these computations. In recent work we presented a generalization of Datalog called Datalog, which addresses these challenges. Datalog is a simple abstraction, which allows aggregates to be interleaved with recursion, and retains much of the simplicity and elegance of Datalog. We define its formal semantics based on an algebraic structure called Partially Ordered Pre-Semirings, and illustrate through several examples how Datalog can be used for a variety of applications. Finally, we describe a new optimization rule for Datalog, called the FGH-rule, then illustrate the FGH-rule on several examples, including a simple magic-set rewriting, generalized semi-naïve evaluation, and a bill-of-material example, and briefly discuss the implementation of the FGH-rule and present some experimental validation of its effectiveness. 
    more » « less
  3. The query containment problem is a fundamental algorithmic problem in data management. While this problem is well understood under set semantics, it is by far less understood under bag semantics. In particular, it is a long-standing open question whether or not the conjunctive query containment problem under bag semantics is decidable. We unveil tight connections between information theory and the conjunctive query containment under bag semantics. These connections are established using information inequalities, which are considered to be the laws of information theory. Our first main result asserts that deciding the validity of a generalization of information inequalities is many-one equivalent to the restricted case of conjunctive query containment in which the containing query is acyclic; thus, either both these problems are decidable or both are undecidable. Our second main result identifies a new decidable case of the conjunctive query containment problem under bag semantics. Specifically, we give an exponential-time algorithm for conjunctive query containment under bag semantics, provided the containing query is chordal and admits a simple junction tree. 
    more » « less